8.4  Introduction to sources of bias in clinical trials

The reliability of the results of a randomized trial depends on the extent to which potential sources of bias have been avoided. A key part of a review is to consider the risk of bias in the results of each of the eligible studies. We introduce six issues to consider briefly here, then describe a tool for assessing them in Section 8.5. We provide more detailed consideration of each issue in Sections 8.9 to 8.14.

 

The unique strength of randomization is that, if successfully accomplished, it prevents selection bias in allocating interventions to participants.  Its success in this respect depends on fulfilling several interrelated processes.  A rule for allocating interventions to participants must be specified, based on some chance (random) process. We call this sequence generation. Furthermore, steps must be taken to secure strict implementation of that schedule of random assignments by preventing foreknowledge of the forthcoming allocations. This process if often termed allocation concealment, although would more accurately be described as allocation sequence concealment. Thus, one suitable method for assigning interventions would be to use a simple random (and therefore unpredictable) sequence, and to conceal the upcoming allocations from those involved in enrolment into the trial.

 

After enrolment into the study, blinding (or masking) of study participants and personnel may reduce the risk that knowledge of which intervention was received, rather than the intervention itself, affects outcomes and outcome measurements. Blinding can be especially important for assessment of subjective outcomes, such as degree of postoperative pain. Effective blinding can also ensure that the compared groups receive a similar amount of attention, ancillary treatment and diagnostic investigations. Blinding may also be important for objective outcomes in trials where enthusiasm for participation or follow-up may be influenced by group allocation. Blinding is not always possible, however. For example, it is usually impossible to blind people to whether or not major surgery has been undertaken.

 

Incomplete outcome data raise the possibility that effect estimates are biased. There are two reasons for incomplete (or missing) outcome data in clinical trials. Exclusions refer to situations in which some participants are omitted from reports of analyses, despite outcome data being available to the trialists. Attrition refers to situations in which outcome data are not available.

 

Within a published report those analyses with statistically significant differences between intervention groups are more likely to be reported than non-significant differences. This sort of ‘within-study publication bias’  is usually known as outcome reporting bias or selective reporting bias, and may be one of the most substantial biases affecting results from individual studies (Chan 2005).

 

In addition there are other sources of bias that are relevant only in certain circumstances. Some can be found only in particular trial designs (e.g. carry-over in cross-over trials and recruitment bias in cluster-randomized trials); some can be found across a broad spectrum of trials, but only for specific circumstances (e.g. bias due to early stopping); and there may be sources of bias that are only found in a particular clinical setting. There are also some complex interrelationships between elements of allocation and elements of blinding in terms of whether bias may be introduced. For example, one approach to sequence generation is through ‘blocking’, whereby a set number of experimental group allocations and a set number of control group allocations are randomly ordered within a ‘block’ of sequentially recruited participants. If there is a lack of blinding after enrolment, such that allocations are revealed to the clinician recruiting to the trial, then it may be possible for some future allocations to be predicted, thus compromising the assignment process.

 

For all potential sources of bias, it is important to consider the likely magnitude and the likely direction of the bias. For example, if all methodological limitations of studies were expected to bias the results towards a lack of effect, and the evidence indicates that the intervention is effective, then it may be concluded that the intervention is effective even in the presence of these potential biases.

 

A useful classification of biases is into selection bias, performance bias, attrition bias, detection bias and reporting bias. Table 8.4.a describes each of these and shows how the domains of assessment in the Collaboration’s ‘Risk of bias’ tool fit with these categories.